We use some essential cookies to make this website work.
We’d like to set additional cookies to understand how you use forestresearch.gov.uk, remember your settings and improve our services.
We also use cookies set by other sites to help us deliver content from their services.
Reduction in the moisture content of biomass material may be required to achieve a number of purposes in energy applications. The moisture content also has an impact on transport and storage of biomass material.
There is a direct, and strong relationship between how dry biomass fuel is and its energy content, or calorific value. This Excel spreadsheet gives values of calorific value as a function of moisture content, as well as various other parameters such as density, for biomass fuel.
In combustion systems any water content in the fuel must be driven off before the first stage of combustion can occur, requiring energy, and thus reducing overall system efficiency and potentially reducing combustion temperature below the optimum.
Reduction in combustion temperature below the optimum may result in incomplete combustion of the fuel giving rise to the emission of tars and creosote which may condense in the flue, especially if it is long or includes changes of direction, and particulates.
The water may also re-condense in the flue, and all these may lead to corrosion of the flue and the gradual accretion of material leading to the potential for eventual blockages or fire.
Most modern, high efficiency combustion systems are designed to operate within a range of parameters to ensure that performance meets emissions and efficiency specifications and a range of acceptable moisture content for the fuel is usually specified. If fuel outside this specification range is used the system may shut down automatically.
Not all modern biomass combustion systems require low moisture content fuel, however. Some are designed to handle fuel at much higher moisture content, e.g. as ‘green’ (freshly harvested) chips. These systems typically make use of some of the heat of combustion to dry the fuel as it approaches the combustion zone.
Many biomass gasifiers are designed to operate on very low moisture content feedstock, perhaps 10-20%. Other technologies, such as anaerobic digestion, fermentation, hydrothermal upgrading and supercritical gasification all make use of feedstock in an aqueous medium, and are particularly suitable for very high moisture content biomass, and for which drying is unnecessary.
High moisture content biomass has a much lower net energy density by mass, owing to the weight of the water, but also by volume owing to the energy required to evaporate the water. This means that transport is less efficient as a significant proportion of the load is water.
Storage is also less efficient, with less net energy available, but also storage of high moisture content biomass brings other problems with greater risk of composting, causing loss of biomass and potentially a fire risk from elevated temperatures and mould formation. Good ventilation and air flow help to minimise these problems.
Cookies are files saved on your phone, tablet or computer when you visit a website.
We use cookies to store information about how you use the dwi.gov.uk website, such as the pages you visit.
Find out more about cookies on forestresearch.gov.uk
We use 3 types of cookie. You can choose which cookies you're happy for us to use.
These essential cookies do things like remember your progress through a form. They always need to be on.
We use Google Analytics to measure how you use the website so we can improve it based on user needs. Google Analytics sets cookies that store anonymised information about: how you got to the site the pages you visit on forestresearch.gov.uk and how long you spend on each page what you click on while you're visiting the site
Some forestresearch.gov.uk pages may contain content from other sites, like YouTube or Flickr, which may set their own cookies. These sites are sometimes called ‘third party’ services. This tells us how many people are seeing the content and whether it’s useful.